This is the class for OpenML Runs, which are
conceptually similar to mlr3::ResampleResults.
This object can also be constructed using the sugar function oml_run().
mlr3 Integration
A mlr3::ResampleResult is returned when calling
mlr3::as_resample_result().A mlr3::Task is returned when calling
mlr3::as_task().A mlr3::DataBackend is returned when calling
mlr3::as_data_backend().A instantiated mlr3::Resampling is returned when calling
mlr3::as_resampling().
References
Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014). “OpenML.” ACM SIGKDD Explorations Newsletter, 15(2), 49–60. doi:10.1145/2641190.2641198 .
Super class
mlr3oml::OMLObject -> OMLRun
Active bindings
flow_id(
integer(1))
The id of the flow.flow(OMLFlow)
The OpenML Flow.tags(
character())
Returns all tags of the object.parquet(
logical(1))
Whether to use parquet.task_id(
character(1))
The id of the task solved by this run.task(OMLTask)
The task solved by this run.data_id(
integer(1))
The id of the dataset.data(OMLData)
The data used in this run.task_type(
character())
The task type.parameter_settingdata.table())
The parameter setting for this run.prediction(
data.table())
The raw predictions of the run as returned by OpenML, not in standard mlr3 format. Formatted predictions are accessible after converting to a mlr3::ResampleResult viaas_resample_result().evaluation(
data.table())
The evaluations calculated by the OpenML server.
Methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
OMLRun$new(
id,
parquet = parquet_default(),
test_server = test_server_default()
)Arguments
id(
integer(1))
OpenML id for the object.parquet(
logical(1))
Whether to use parquet instead of arff. If parquet is not available, it will fall back to arff. Defaults to value of option"mlr3oml.parquet"orFALSEif not set.test_server(
character(1))
Whether to use the OpenML test server or public server. Defaults to value of option"mlr3oml.test_server", orFALSEif not set.
Examples
# For technical reasons, examples cannot be included in this R package.
# Instead, these are some relevant resources:
#
# Large-Scale Benchmarking chapter in the mlr3book:
# https://mlr3book.mlr-org.com/chapters/chapter11/large-scale_benchmarking.html
#
# Package Article:
# https://mlr3oml.mlr-org.com/articles/tutorial.html