This is the class for OpenML Runs, which are
conceptually similar to mlr3::ResampleResults.
This object can also be constructed using the sugar function oml_run()
.
mlr3 Integration
A mlr3::ResampleResult is returned when calling
mlr3::as_resample_result()
.A mlr3::Task is returned when calling
mlr3::as_task()
.A mlr3::DataBackend is returned when calling
mlr3::as_data_backend()
.A instantiated mlr3::Resampling is returned when calling
mlr3::as_resampling()
.
References
Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014). “OpenML.” ACM SIGKDD Explorations Newsletter, 15(2), 49--60. doi:10.1145/2641190.2641198 .
Super class
mlr3oml::OMLObject
-> OMLRun
Active bindings
flow_id
(
integer(1)
)
The id of the flow.flow
(OMLFlow)
The OpenML Flow.tags
(
character()
)
Returns all tags of the object.parquet
(
logical(1)
)
Whether to use parquet.task_id
(
character(1)
)
The id of the task solved by this run.task
(OMLTask)
The task solved by this run.data_id
(
integer(1)
)
The id of the dataset.data
(OMLData)
The data used in this run.task_type
(
character()
)
The task type.parameter_setting
data.table()
)
The parameter setting for this run.prediction
(
data.table()
)
The raw predictions of the run as returned by OpenML, not in standard mlr3 format. Formatted predictions are accessible after converting to a mlr3::ResampleResult viaas_resample_result()
.evaluation
(
data.table()
)
The evaluations calculated by the OpenML server.
Methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
OMLRun$new(
id,
parquet = parquet_default(),
test_server = test_server_default()
)
Arguments
id
(
integer(1)
)
OpenML id for the object.parquet
(
logical(1)
)
Whether to use parquet instead of arff. If parquet is not available, it will fall back to arff. Defaults to value of option"mlr3oml.parquet"
orFALSE
if not set.test_server
(
character(1)
)
Whether to use the OpenML test server or public server. Defaults to value of option"mlr3oml.test_server"
, orFALSE
if not set.
Examples
# For technical reasons, examples cannot be included in this R package.
# Instead, these are some relevant resources:
#
# Large-Scale Benchmarking chapter in the mlr3book:
# https://mlr3book.mlr-org.com/chapters/chapter11/large-scale_benchmarking.html
#
# Package Article:
# https://mlr3oml.mlr-org.com/articles/tutorial.html